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Critical behavior of the annihilating random walk of two species with exclusion in one dimension
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The A1A→0, B1B→0 process, with exclusion between the different kinds, is investigated here numeri-
cally. Before treating this model explicitly, we study the generalized Domany-Kinzel cellular automaton model
of Hinrichsen on the line of parameter space where only compact clusters can grow. The simplest version is
treated with two absorbing phases in addition to the active one. The two kinds of kinks which arise in this case
do not react, leading to kinetics differing from the standard annihilating random walk of two species. Time
dependent simulations are presented here to illustrate differences caused by exclusion in scaling properties of
the usually discussed characteristic quantities. The dependence on the density and composition of the initial
state is most apparent. Making use of the parallelism between this process and directed percolation limited by
a reflecting parabolic surface, we argue that the two kinds of kinks exert marginal perturbation on each other
and lead to deviations from standard annihilating random walk behavior.

PACS number~s!: 05.70.Ln, 64.60.Ht, 64.60.Ak
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I. INTRODUCTION

Non-universal dynamical behavior seems to be a con
versial issue in nonequilibrium models. An outstanding e
ample is the debated behavior of systems exhibiting i
nitely many absorbing states@1–4#. There has been no
analytic treatment up to now; argumentation by various
thors, in most of the cases, was based on simulation res
Despite intensive study, the critical behavior of such syste
is poorly understood, nonuniversality remains an unresol
problem, and even scaling behavior is questioned. Roug
speaking, in these coupled processes the ‘‘primary’’ partic
follow a branching and annihilating random walk, while th
other species just provide a slowly changing environm
that affects the branching rates of the primaries. The spre
ing exponents of the primaries depend on the initial con
tions of the environment.

A possible way which might lead to a deeper understa
ing of the mechanism behind nonuniversal spreading co
be the study of simpler coupled systems. Perhaps the
plest case is the coupled annihilating random walk of t
species (A1A→B, B1B→B). Naively, one would expec
that this could be described by the exactly solved field the
of the A1A→B process@5# ~ARW!. In one dimension,
however, the situation is more subtle than in higher dim
sions. Particles of different types can block the motion of o
another. The difference between one and two dimensions
been found to give rise to different phase diagrams in
case of the general epidemic model@2#. The question now
arises as to the extent of the relevance of the exclusion
turbation caused by this blocking mechanism to a fixed po
of the kind determined in Ref.@5#.

Another motivation of this study originates from the i
vestigations of Hinrichsen@6#, who found, by simulations, a
strange scaling behavior in some special case of his m
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@7#, for which, an explanation is still lacking. In Sec. I
Hinrichsen’s model will be introduced. It is easy to see th
the kinks in this model at the symmetry point, correspond
to the compact directed percolation point of the Doman
Kinzel automaton, exhibit the process described above
Secs. III and IV we present our high precision time depe
dent simulation results from random and seed initial con
tions. In Sec. V these results are compared with those
tained by rigid ~i.e. parabolic! boundaries. We further
investigate this analogy on the mean-field level in Sec.
while Sec. VII is devoted to results in the explicit two
species annihilating random walk model with exclusi
~ARW2e!. We summarize our numerical results in Sec. VI
and give an outlook towardN-species generalization in Se
IX. A qualitative description of the behavior of Hinrichsen
model outside the symmetry point on the line of compactn
is presented in Sec. X and finally in Sec. XI we summar
and discuss our results.

II. GENERALIZED DOMANY-KINZEL SCA

The Domany-Kinzel~DK! stochastic cellular automato
~SCA! @8# is one of the simplest models which show a no
equilibrium phase transition into an absorbing state. T
one-dimensional SCA is defined on a ring with two sta
‘‘1’’ and ‘‘0’’ with the following rule of update:

where att11 the probability of 1’s is shown.
In the plane of the parameters (p,q), the phase diagram

of the DK SCA is as follows. A line of critical points sepa
rates the active phase~with a finite concentration of 1’s!
6404 ©2000 The American Physical Society
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FIG. 1. ~a! The phase diagram of the DK SCA.~b! The corresponding phase diagram in the case of the simplest version of the
cellular automaton model of Hinrichsen.
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from the absorbing~vacuum! phase~with zero steady state
density of 1’s!. This continuous transition belongs to the un
versality class of directed percolation~DP! @9#. The end
point of this line (q51, p51/2) describes a transition, how
ever, outside the DP class; it corresponds to compact
rected percolation~CDP!. Here the model exhibits Ising
symmetry and can be solved exactly@8#.

In 1997 Hinrichsen@6# introduced a generalized versio
of the DK model including more than one symmetric ina
tive states (I1, I2, . . . ) and oneactive state (A). The mo-
tivation for this study was to look for a possible change
the universality class of the line separating the active
passive steady states. This generalized DK model~GDK in
the following!, in its simplest form with two absorbing state
I1 andI2 has been defined by the rules given below:

s1 ,s2 P(Aus1 ,s2) P(I 1us1 ,s2) P(I 2us1 ,s2)

AA q (12q)/2 (12q)/2
AI1 p 12p 0
AI2 p 0 12p
I 1A p 12p 0
I 2A p 0 12p
I 1I 1 0 1 0
I 1I 2 1 0 0
I 2I 1 1 0 0
I 2I 2 0 0 1

The geometry of updating is the same as in the case of
DK SCA. It has been shown by simulation@6# that the phase
diagram which emerges is similar to that in the DK SCA:
active phase is separated from an inactive one by a lin
continuous phase transitions. The inactive phase, howev
symmetrically degenerated (I1 or I2) and the phase trans
tion line now belongs to the parity conserving~PC! univer-
i-

-

d

he

of
is

sality class. This class has been studied by many author
the first exception from the robust DP class@10–18#.

The phase diagram exhibited in Fig. 1~b! shows that the
line of PC transitions ends atq51, p51/2, a point which
corresponds the Ising symmetry point of the DK automat
The primary aim of the present work is to investigate t
scaling properties of GDK at this point, which will be calle
CDP2 transition point. A typical time evolution of the GDK
model at this special point, when starting from a rando
initial arrangement ofI1’s, I2’s andA’s is shown on Fig. 2.
Here active islands can be spatially extended; thus th
kinds of compact clusters can grow. Nevertheless only theI1
andI2 phases areZ2 symmetric, while the active phase play
a special role.~The situation is different from a three-sta
Potts model with Glauber kinetics.!

FIG. 2. Evolution from a random initial state in the generaliz
Domany-Kinzel SCA~GDK! on the line of compactness, atq51
andp50.5. Light gray:I1; dark gray:I2; white: A.
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It is well known that the CDP process in one dimension
equivalent to an annihilating random walk process of kin
@8# separating compact domains of 0’s and 1’s. In the mo
investigated here, two types of kinks can be defined, nam
kink K1 between domainsA andI1 ~andI1 andA) and kink
K2 between neighboringA and I2’s ~and I22A’s!. The
rules of the model inhibit occurrence of kinks between d
mains of absorbing phases, i.e., betweenI1-I1 andI2-I2.

Kinks K1 andK2 perform annihilating random walks—
K11K1→B and K21K2→B—while the processesK1
1K2→B, K21K1→B are forbidden. In other words
upon meeting, aK1 and aK2 ‘‘block’’ each other~do not
annihilate and do not exchange sites! @7#. To our knowledge
such a kind of kinetics has not been studied before. M
vated by this fact we have decided to explore the criti
behavior of the above described system, on the line of c
pactness (q51), by computer simulation. In this study sp
cial attention will be paid to thep51/2 symmetry point
CDP2.

III. SIMULATIONS FROM RANDOM INITIAL STATE

We have performed time dependent simulations star
from states with uniformly distributed speciesA, I1, andI2,
with respective densities:r0(A), r0(I1) andr0(I2). At the
CDP2 point an unusual scaling behavior of the density
kinks was previously observed@7#: a deviation from the or-
dinary annihilation-diffusion process with a kink-density d
cay r(t);1/At. Instead,r(t);t2a, with a'0.55, resulted
from the first simulations.

To check whether the observed deviation from stand
ARW behavior is only a cross-over effect or if it herald
some basic feature of altered kinetics we have perform
very long-time (tmax5106 Monte Carlo sweeps! simulations

FIG. 3. Total kink number as a function of time started fro
symmetrical homogeneous random initial states:r0(I1)5r0(I2)
50.3 ~solid line! and r0(I1)5r0(I2)50.1 ~dotted line!. The
dashed line corresponds to a single species annihilating ran
walk @r0(I1)50, r0(I2)51/2], exhibitingr(t)}t20.5.
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on systems withL524 000 ~Fig. 3! @19#. Throughout the
whole papert is measured in units of Monte Carlo sweep

Figure 4 shows the results of simulations. It is seen t
the deviation from the standard ARW value of the dec
exponent remains present asymptotically as well: the lo
slopes of the decay curves

a~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~1!

~where we usually usem58) go to constant values.More-
over, another interesting feature has become apparent:
kink-decay exponent depends on the initial concentrationof
the componentsr0(I1)5r0(I2), and in such a way that fo
a higher initial kink density~lower average distance betwee
the kinks! the decay is faster. Asymptotically, asr0→0, the
average distance of dissimilar kinks goes to zero and
decay exponent tends to the ARW value:a→0.5.

In the case of asymmetric initial condition@r0(I1)
Þr0(I2)# K1’s andK2’s decay at different rates. The typ
that has a smaller initial density decays faster. For exam
in the case ofr0(I1)51/9 and r0(I2)51/3, K2 decays
roughly like t20.5 ~unperturbed byK1’s! but the local slopes
~1! of r(K1) deviate strongly from 0.5.

IV. SIMULATIONS FROM AN ACTIVE SEED

The cluster simulations@20# were started from a state wit
uniformly distributedA’s andI1’s except for a singleI2 pair
in the middle and the following characteristic quantities f
the I2’s were followed: ~i! the average number ofI2’s,
NI2(t); ~ii ! their survival probabilityPI2(t); and ~iii ! the
average mean square distance of spreading ofI2’s from the
centerRI2

2 (t). The above quantities were averaged overNs

independent runs at the CDP2 point@in the case ofRI2
2 (t),

only for surviving samples#. At the critical point we expect

m

FIG. 4. Local slopes of the kink density decay for symmetric
initial conditions r0(I1)5r0(I2)5 0.3, 0.2, 0.15, 0.1, and 0.05
~from bottom to top curves!. The simulation result for one specie
~ARW! is also shown~top curve!.
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these quantities to behave fort→`, as

NI2~ t !}th, ~2!

PI2~ t !}t2d, ~3!

RI2
2 ~ t !}tz. ~4!

Upon varying the initial densityr0(I1), for the exponents
d and h @defined similarly to Eq.~1!, the local slopes of
NI2(t) andPI2(t)], continuously changing values have be
observed~Figs. 5 and 6!. The deviation of these exponen
from those of the single-species annihilation random w
process—1/2 and 0, respectively—is remarkable. T
spreading exponentz, on the other hand, seems to be co
stant within numerical accuracy, and equals that of the sin
species annihilating random walk:z52/Z51, such that the
generalized hyperscaling law of the compact directed pe
lation @21#,

h1d5z/2, ~5!

is satisfied. In this respect it is important thath has been
found to be negative.

V. CLUSTER SIMULATIONS OF COMPACT DIRECTED
PERCOLATION CONFINED IN A PARABOLA

To understand the physics of our numerical results up
now we set up a parallelism with an other case where the
process is bounded by parabolic space-time boundary co
tions. We perform simulations on the compact cluster v
sion of this, and compare the results with those of the G
model in Sec. VIII.

Kaiser and Turban investigated @22,23# the
(111)-dimensional DP process limited by a special, pa
bolic boundary condition in space and time directions,

FIG. 5. Local slopes of the number ofI2’s. The initial state is
uniformly distributed with initial densitiesr0(I1)50.1 ~solid line!,
0.25 ~dotted line!, 0.5 ~dashed line!, and 0.75~long-dashed line!.
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y56Ctk, ~6!

whereC changes under uniform length rescaling~by b) to

C85bZk21C. ~7!

HereZ is the dynamical critical exponent. By referring to
conformal mapping of the parabola to straight lines, a
showing it in the mean-field approximation Kaiser and Tu
ban claimed that fork,1/Z this surface gives relevant pe
turbation to the DP process; fork.1/Z the perturbation is
irrelevant, and fork51/Z it is marginal. The marginal cas
results inC dependent nonuniversal power-law decay~for
details, see Sec. VI!, while for the relevant case stretche
exponential functions have been obtained. The above aut
have given support to this claim by numerical simulation

We have investigated the effects of parabolic and refle
ing boundary conditions for the CDP2 process numerica
Time-dependent cluster spreading simulations have b
performed in the GDK model with parabolic boundarie
such that at each time step the simulation region is boun
by two I1’s at ymin andymax, where

ymin5L/2222Ctk, ~8!

ymax5L/2121Ctk. ~9!

Two I2’s have been set initially at the center (L/2,L/2
11) and some initial space~two A’s to the left and right!
betweenK1’s andK2’s has been added. Therefore the ro
of I1’s is now purely the formation of parabolic boundari
aroundI2’s, and in factwe investigate the plain CDP pro
cess with reflective boundary conditions. A typical ~111!-
dimensional run appears as shown below~1, 2, and 0 stand

FIG. 6. The same as Fig. 5, for the cluster survival probabil
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for I1, I2, andA, respectively!:

When we fixed the exponent atk51/2, to make the situation
marginal we found continuously changing exponents for
exponents of the survival probabilityPI2 and the number of
I2’s, NI2, by varying the shapeC ~Fig. 7!. One can see tha
the exponent slopes ofNI2(t) ~Fig. 8! and PI2(t) ~Fig. 9!
change by varyingC. The spreading exponent of theI2’s, z,

FIG. 7. Parabola cluster confinement simulations for CD
Middle curves:NI2(t) (C52,1.5,1.2, and 1 top to bottom!. Lower
curves:PI2(t) (C52,1.5,1.2, and 1 top to bottom!. Upper curves:
RI2

2 (t) (C52,1.5,1.2, and 1 top to bottom!.
e

seems to be constant: equal to unity~Fig. 10!. These results
are very similar to those of the seed simulations in the G
modes of Sec. IV.

An analysis based on local slopes~Figs. 8, 9, and 10!
again shows plateaus for high values oft, indicating true
power-law behaviors. The magnitude of the exponent ch
acterizing the decay of the density ofI2’s decreases asC is
increased, reminiscent of a similar situation in Ref.@22#.

The survival exponent changes in such a way that
hyperscaling relation valid in the case of compact direc
percolation@21#,

z/25h1d51/2,

is fulfilled. In this case it is again important thath takes
negative values.

VI. THEORETICAL CONSIDERATIONS FOR CDP
CONFINED IN A PARABOLA

A. Anisotropic scaling

In ~111!-dimensional anisotropic systems the correlati
length diverges asj i;t2n i in time and asj';t2n in space,

.

FIG. 8. Parabola cluster confinement simulations for CDP. L
cal slopes ofNI2 for different values ofC. Solid line:C52; dotted
line: C51.5; dashed line:C51.2; long-dashed line:C51.

FIG. 9. The same as Fig. 8, for the cluster survival probabil
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with a dynamical exponentZ5n i /n (n is also denoted asn'

in the literature!. Covariance under a change of the leng
scales then requires two different scaling factors:bi5bZ and
b'5b.

We now consider a system displaying anisotropic criti
behavior, and limited by a free surface in the (t,y) plane as
given in Eq. ~6!. Under rescaling, witht85t/bZ and y8
5y/b, C transforms according to Eq.~7!, as discussed in
Sec. V.

In the marginal case, which we will consider now,Z
51/k, the scaling dimensionxm of the tip order paramete
becomesC-dependentxm(C). The order parameter correla
tion function between the origin and a point at (t,y) trans-
forms as

GS D,t,y,
1

CD5b22xmGS b1/nD,
t

bZ ,
y

b
,
b12Zk

C D , ~10!

whenL is infinite. With b5t1/Z, Eq. ~10! leads to:

GS D,t,y,
1

CD5t22xm /ZgS t

D2n i
,
yZ

t
,

t

l C
D . ~11!

Here l C5CZ/(12Zk), D5(p2pc)/pc , andxm is the scaling
dimension of the order parameter. The latter is connecte
b, the critical exponent of the order parameter viab
5nxm . We will use this scaling form in the following.b is
the usual order-parameter exponent, defined, for the
SCA, throughr1}(p2pc)

b, for p.pc ; r1 is the stationary
density of 1’s. In case of a first order transition, as is the c
with compact directed percolation, the following conside
ations hold.

As already mentioned,

P~ t !}t2d ~12!

is the survival probability of 18s for spread of particles~1’s,
in our notation! about the origin. Away from the critica
point b8 governs the ultimate survival probability~starting
from a localized source!: P`[ limt→`P(t)}(p2pc)

b8. It is
known thatb851 in CDP.@8# The order parameter expone

FIG. 10. The same as Fig. 8, for the exponent of the clu
spreadingRI2

2 .
l

to

K

e
-

b, however, iszero. This is becausep51/2 marks adiscon-
tinuous transition, by symmetry:r150 for p,1/2 andr1
51 for p.1/2. Strictly speaking,b is not defined here, bu
it is natural to associate the valueb50 with the discontinu-
ous transition.

This problem with the ill-defined exponentb can be
avoided following the lines of Grassberger and de la Torr
scaling argument@20# for discontinuous transitions, as pre
sented by Dickman and Tretyakov@21#. Consider a model
with a transition from an absorbing state to an active stat
D50, with exponentsd, h, z, and b8 defined as above
Suppose, however, that the order parameterr is discontinu-
ous, being zero forD,0, and

r5r01 f ~D! ~13!

for D.0, wherer0.0, andf is continuous and vanishes a
D50. According to the scaling hypothesis for spreadi
from a source, there exist two scaling functions, defined
@20#

r~y,t !;th2dz/2G̃~y2/tz,Dt1/n uu! ~14!

and

P~ t !;t2dF~Dt1/n uu!. ~15!

@Here r(y,t) is the local order parameter density.t
;D2n uu.] Existence of the limitP` implies thatF(x);xb8

asx→`, with b85dn uu . In a surviving trial, the local den-
sity must approach the stationary densityr as t→`, so
r(y,t);Db8r0, for t→` with fixed y, andD small but posi-
tive. It follows thatG̃(0,x);xb8 for largex.

An important consequence of this is that we can use, a
scaling dimension of the order parameter for CDP, the va
b8 in the relationxm5b/n instead ofb. Via scaling rela-
tionsb85dn uu , the values obtained by computer simulatio
for d will be compared with results for CDP plus parabo
boundary conditions. In this context the connection, ag
via scaling relation, betweend and the decay exponent of th
density of kinks when starting from a random initial statea
will also be made use of .

B. Mean field analysis for CDP confined in a parabola

In this section we will follow the lines of the mean-fiel
analysis of the (111)-dimensional DP process confined by
parabola as given in Ref.@23#, but now applied to compac
directed percolation~for the basic processes, see Fig. 1!.
The order parameter correlation function is the probabi
density P(t,y) for a site at (t,y) to be connected to the
origin.

r

FIG. 11. Site update rules for compact directed percolation.
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First we consider the case without confinement. In
mean-field approximation one can set up an equation for
connectedness at (t11,y):

P~ t11,y!5p$P~ t,y11!@12P~ t,y21!#

1P~ t,y21!@12P~ t,y11!#%

1P~ t,y11!P~ t,y21!. ~16!

Going to the continuum limit the following differential equa
tion is obtained:

]P

]t
5p

]2P

]y2
1~2p21!P1~122p!P2. ~17!

The homogeneous, stationary solution of Eq.~17! is

P05H 1 for p.1/2

0 for p<1/2,
~18!

describing a first order transition for CDP atpc51/2, as is
the case. At the transitionp5pc , Eq. ~17! reduces to

]P

]t
5

1

2

]2P

]y2
. ~19!

This is the ordinary diffusion equation of the rando
walk with solution

P~ t,y!5

expS 2
y2

2t D
A2pt

, ~20!

which is exact in the CDP case. From comparison with
scaling form in Sec. VI A, the following~well-known! expo-
nents for CDP arise:

n i51, n51/2, Z52, xm5
1

2
. ~21!

On a parabolic system, we use the new variablest and
z(t,y)5y/tk, for which the free surface is shifted toz
56C, and Eq.~19! is changed into

]P

]t
5

1

2t2k

]2P

]z2
1k

z

t

]P

]z
, ~22!

with the boundary conditionP(t,z56C)50. Through the
change of function

P~ t,z!5expF2
k

2
z2t2k21GQ~ t,z!, ~23!

Eq. ~22! leads to

]Q

]t
5

1

2t2k

]2Q

]z2 1
k

2 F ~k21!z2t2k222
1

t GQ, ~24!

for which the variables separate whenk51,1/2, or 0. These
values ofk just correspond to irrelevant, marginal, and r
evant perturbations.
e
e

e

For k51 the critical behavior is the same as for unco
fined percolation, as expected for an irrelevant perturbat
For the true parabola which is the marginal geometry, o
may use Eq.~22! with k51/2 to obtain

t
]P

]t
5

1

2

]2P

]z2
1

z

2

]P

]z
, z5

y

t1/2
, ~25!

which is of the form studied in Ref.@24# for the directed
walk problem. WritingQ(t,z)5f(t)c(z) leads to the fol-
lowing eigenvalue problem forc(z):

1

2

d2c

dz2
1

z

2

dc

dz
52l2c, ~26!

with f(t);t2l2
. The solution is obtained as the eigenval

expansion

P~ t,y!5 (
n50

`

Bnt
1
2ln

2

F1Fln
2 ,

1

2
;2

y2

2t G . ~27!

The behavior at larget is governed by the first term in thi

expansion, which decays ast2l0
2
, i.e., with a C-dependent

exponent, as expected for a marginal perturbation.The di-
mension of the tip-to-bulk correlation function is the sum
the tip and bulk order parameter dimensions, the first o
being variable.Comparing with the form of the decay in Eq
~11! givesl0

25@xm
m f(C)1xm#/Z and, using Eq.~21!, the tip

order parameter dimension is given by

xm
m f~C!52l0

22
1

2
. ~28!

Its dependence onC is shown in Fig. 2 of Ref.@22#.
Analytical results can be obtained only in limiting case

which were already discussed in Ref.@24#. WhenC is infi-
nite, l0

251/2, only the first term in the expansion remain
which satisfies the initial and boundary conditions, givi
back the free solution in Eq.~20!. For largeC values, the tip
exponent is xm

m f(C)5 1
2 1A2/pC exp(2C2/2)@11O(«)#,

where« is the correction term itself. For narrow systems, t
hypergeometric function gives a cosine to leading order
C2. One obtains the following asymptotic behavior int:

P~ t,y!;t2p2/8C2
cosS py

2CAt
D , ~29!

and the tip exponent diverges asp2/4C2.
For 0,k,1/2 the dependence ont is expected to be a

stretched exponential function. For details see Refs.@22,24#.

VII. ANNIHILATING RANDOM WALK OF TWO SPECIES
WITH EXCLUSION

To check our results concerning the scaling properties
kinks in the GDK model at the CDP2 point, we have carri
out an explicit simulation of the annihilating random walk
two species (A,B) with exclusion. The model we have in
vestigated has been suggested by Hinrichsen@7# and is as
follows. A (B) will hop to a neighboring empty site with
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probabilityp1A (p1B), or annihilate with a neighborA (B)
with probability p2A (p2B), while A and B do not react
when moving into neighboring positions. The initial config
ration was chosen in such a way that always allows pair
the same kind to annihilate within some finite time interv
~i.e., the system evolves into an empty state!, namely,

This means thatAA and BB pairs have been put in a one
dimensional~1D! ring with initial probability r(0). Had we
not chosen the initial state in this way, the system wo
have ended up in some finite particle configuration wh
A’s and B’s follow each other alternatingly, separated
arbitrary empty regions.~This initial configuration is also in
agreement with the arrangement of the two kinds of kinks
some random initial state of the GDK model.! The probabili-
ties p1A, p1B, p2A, and p2B have been chosen to b
unity, to achieve maximum simulation effectiveness;
qualitative difference in the results have been found up
lowering them.

Clearly this process is different from the simple annihil
ing random walk of two speciesA1B→B @25#, therefore,
we may expect that a field theory describing this mo
~which, however, is still missing! would result in a different
fixed point with different critical exponents as well. Furthe
more one can argue that when comparing the simple ran
walk and the random walk plus exclusion processes, one
observes different dynamical behaviors. This latter cas
nothing else but theT50 dynamics of the 1D Ising mode
with Kawasaki exchange, where we have different dom
growth properties than in case of a simple random walk.

An extensive numerical simulation with the look-up tab
algorithm seems to confirm this expectation. As Fig.
shows, the slopes of the density decay started from the
cial pairwise random states described above depend on
initial densityr(0).

The local slopes tend to constant values greater thaa
50.5 in agreement with the GDK kink results. The level-o

FIG. 12. Local slopes of particle decay in the annihilati
random walk plus exclusion process of two spec
(L524 000). The initial conditions arer050.1, 0.25, and 0.5 from
the bottom curve to the top curve.
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in case of r050.5 happens only fort.1.53106 Monte
Carlo sweeps. The averageAA and BB distances confining
another type of particle have also been measured during
simulations, which enables us to extract the amplitude~C! of
the confinement in the function fitted (C3t2a). These val-
ues will be used to compare the results with those of
GDK ~see Sec. VIII!.

VIII. SUMMARY OF TIME DEPENDENT RESULTS

Since in all of the previously shown cases we found no
universal scaling, depending on the initial conditions and
generic model to account for such behavior, seems to be
case of CDP2 with parabolic boundary condition, we ha
decided to measure the region of confinement in all ca
and plot the survival probability exponentsd and the kink
decay exponentsa as a function of the shape of the me
sured parabola.

In the present caseb8 the final survival probability of a
cluster plays the role of the order parameter exponentb, as
explained at the end of Sec. VI, and for the characteri
exponents we have:d5b8/n i . Thus we have plotted the
results ford(C). In a common graph the fitted values fo
a(C) are also shown; on the level of kinks the order para
eterb is connected toa in the same way asb8 is to d for
‘‘spins’’ ~see e.g. Ref.@26#!.

For random initial conditions in the GDK model the cha
acteristic distance between two neighboring kinks of a giv
type has also been measured. The average neighbor dis
l K22K2, shown in Fig. 13, has been obtained for initial de
sities: r0(I1)5r0(I2)51/3. The power-law increase fo
large t ~see the plateau fort.30.000) with the same scalin
exponent as the decay exponent is not very surprising,
causerkink(t)}1/l K2-K2.

Since theK2-K2 andK1-K1 pairs confine the motion o
each other~a K1- K2 pair cannot exchange toK2-K1) this
power-law increasing length scale imposes a ‘‘stochast
boundary condition~pressure on kinks! with a mean value of
a parabola that was similarly investigated by Kaiser and T
ban @22# in the case of (111)-dimensional DP processe

s
FIG. 13. Local slopes of theK2-K2 neighbor distances in a

GDK model of sizeL524 000. The initial state is uniform, with
r0(I1)5r0(I2)51/3.
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@23#, and adapted for the case of a CDP-like first order tr
sition in Sec. VI. As discussed above, the scaling dimens
of the order parameter changes continuously with the am
tude of the parabolically growing confining box size if
grows with the same exponent as the cluster inside.

In our case we encounter a similar situation. The k
density decay exponenta seems to vary continuously in th
case of symmetrical initial conditions. The initial condition
affect the amplitudes of the density decays~as was shown to
be valid by field theory for pure reaction diffusion ofA, B
particles@25#!, and therefore the amplitudes of the confin
ment region sizes~C! ~see Fig. 14!. To compare our results
with those of Refs.@22,23# the formA1Cta has been fitted
to thel K22K2(t) distances determined from the density dec
simulations@assumingl K22K2(t)52/rkink(t)]. The follow-
ing table summarizes the results for GDK with random init
conditions:

r0 C a

0.0 ` 0.5000~3!
0.05 14.09 0.517(2)
0.10 7.62 0.528(2)
0.15 6.11 0.534(2)
0.2 5.85 0.537(2)
0.3 4.18 0.540~1!

This is in agreement with Fig. 8 of Ref.@23#, where an
increasingC causes a decreasing exponent. Note that the
line in the table corresponds to the simple ARW proce
therefore, there is no confinement~amplitudeC is `).

The main difference between the rigid parabola bound
case and the ‘‘stochastic’’ confinement is that in the lat
case the boundary generates an additional noise to the
tion of confined particles. Therefore we do not simply ha
‘‘free’’ particles confined in a parabola; they are also pe
turbed by the noise in such a K1↔K2 symmetrical way that
the outcome perturbation is marginal.

FIG. 14. Possible explanation for the nonuniversal scaling. T
symmetric I1 and I2 clusters exert marginal exclusion perturb
tions on each other.
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In ARW simulations the formA1Cta has again been
fitted for the measuredAA and BB distances. In cluster
simulations we fitted the formy5C3td for the region of
confinements, and determined the respectiveC’s in all cases.

As Fig. 15 shows, we obtained similar monotonically d
creasing curves in all cases, which also agrees with the
sults of Ref. @22#. The uniform GDK and ARW2 results
seem to lie on the same curve. The spreading simula
results of GDK are different from those of the CDP pl
parabolic boundary condition case. This can be understo
however, since in the former case the confined partic
(I2’s! have a back effect on the bulk (I1’s! particles, while
this is not the case when the boundary is fixed.

We also show thep2/8C2 curve, determined as th
asymptotic solutionC→0 of the mean-field approximation
see Sec. VI, Eq.~29!. This seems to be in fair agreement wi
the case of the CDP plus fixed parabolic boundary conditi

IX. GENERALIZATION FOR NÌ2: SYMMETRIC
ANNIHILATING EXCLUSION PROCESS OF N SPECIES

We have carried out preliminary simulations in the ge
eralized version of the model introduced in Sec. VII. T
system was started from configurations like

where species of the same type can annihilate each other
different types cannot exchange. Our results show that c
cerning the time dependence of the density the deviati
from the square root decay persist forN.2, and this prop-
erty also seems to remain valid forN→`.

Figure 16 shows that a similar level off can be observ
in the local slopes as in theN52 case witha.0.5. A ten-
dency toward increasinga with increasingN is apparent in

e

FIG. 15. Confinement shape parameter~C! dependence of expo
nentd for cluster simulations in the parabola~squares!, the I2 clus-
ter ~diamonds!, anda in simulations from uniform initial conditions
in ARW2e ~circles! and GDK ~triangles!. The solid line shows the
p2/8C2 mean-field approximation.
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our simulations; the growing effect of finite size correction
however, prevented us from going further, for higher valu
of N, in this study.

X. GDK ON THE LINE OF COMPACTNESS

On the lineq51 the role of the absorbing states (I1 and
I2) is symmetric. The above reported simulation results
the GDK model refer top51/2, the CDP2 point. Now we
will discuss the situation forpÞ1/2. Forp.1/2 the creation
of new A’s happens with a probability greater than 0.5; t
active domain size grows exponentially, and the inactive
gions die out quickly~and symmetrically!; the all-A phase
plays the same role as the all-1 phase of the original
automaton@8#. The deviation from the DK picture is quit
apparent, however, forp,1/2, as instead of the all-0 phas
of DK, for all values of p with the exception ofp50,
Glauber-Ising-like kinetics governs the motion of kinks. T
kinks here are extended objects (A’s!, somewhat similarly to
those in Grassberger’s CA models@10# ~for p,pc , wherepc
is the critical point of a parity conserving phase transitio!
where kinks of different extensions~and even of different
structures! also separate absorbing-phase clusters.~At p50
diffusion stops and a striped space-time picture ofI1 andI2
domains freezes in, again like in Grassberger’s modelA cited
above.! The average size ofA’s goes to zero between tw
domains of the same type quickly; kink ‘‘particles’’ of th
same type perform abiasedrandom walk toward each othe
On the other hand, between domains of different types th
remains a film ofA’s of average size 1, since a collision o
a I1 andI2 domains always creates a newA at the next time
step. This means that kinks of different types still block t
motion of one another. Therefore the role of theA’s is simi-
lar to the kinks of theT50 Glauber Ising model. On the
whole line of 1/2.p.0, in the long time limit, therefore
one can expect the number of such kinks to decreas
(t21/2). On the other hand this is a line of compactness, as
clusters growing from a seed are compact; the character
exponents (h, d, and z), though strongly dependent onp
and the composition of the initial state, satisfy the hypersc
ing law valid for compact cluster@21#. This statement in-

FIG. 16. Results for density decay in the symmetric annihilat
exclusion process ofN53 and 4~top and bottom curves! species.
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volves the fact that this line is a line of first order transitio
points with an order parameter exponentb50. This first
order transition occurs if a symmetry-breaking~‘‘magnetic’’!
field coupled to theI1 andI2 spins. For a detailed descrip
tion of a similar situation, see Ref.@27#. All these features
have been supported by simulations. As an example we
give some results obtained atp50.4, starting with a single
I2 in the sea ofI1’s and A’s ~25% of I1, 75% of A); d
50.45, z/250.47, andh I2520.02. It is worth mentioning
that, for hyperscaling to hold, it is again important thath I2
be negative.

XI. DISCUSSION

We have numerically investigated the one-dimensio
generalized Domany-Kinzel cellular automaton on a line
the plane of its parameters where only compact clus
grow. The two types of kinks in the simplest version of th
compact GDK model~two absorbing phases! follow an an-
nihilating random walk with exclusion~no reaction! between
different types. The equivalence with an explicit two-spec
ARW model with exclusion is shown, provided the initia
state is prepared in such a way that the kinks are arrange
pairs with some density. High precision simulations revea
that this system relaxes in a nontrivial way: the decay ex
nent of the kink density depends on the initial density
kinks. We argue that this is a kind of~internal! surface effect,
similar to the ARW process confined by a rigid space-tim
parabola, provided the power of the parabola is chosen to
marginal. This case has been explicitly investigated, with
result that the spreading exponents behave qualitatively
same way as expected from the corresponding mean-
approximation. We have no proof of the marginality for th
theory including fluctuations, but rely on symmetry arg
ments. If we assumed that particles exerted relevant pe
bations (k,1/2) on each other, the corresponding parab
picture would predict a stretched exponential decay~a behav-
ior that is very difficult to differentiate from power laws b
simulations! and the local slopes should go to some high
value as a function of time~meaning faster that any powe
law decay!. However our high precision data show just th
opposite case: the local slopesdecreaseas a function of time,
tending to a value somewhat greater than 1/2.

Nevertheless, the possibility of pure square-root dec
masked by some tremendously long crossover function, c
not be ruled out. One could still expect a nonuniversal sc
ing of the survival probability of particles in the same way
was observed in Refs.@22,23#, or in another similar situation
@28# where a diffusing ‘‘prisoner’’ confined by a marginall
growing cage was investigated. In the latter case the bou
ary condition was absorbing, and an exact solution was p
sible, giving an exponent for the survival probability whic
is a continuous function of the amplitude of the margin
parabola. Furthermore the survival of a diffusing prison
~with diffusivity D), inside a cage where both walls diffus
~with diffusivity A), has been solved exactly, and the dec
exponent was found to bep/2 cos21@D/(D1A)# @29#.

Nonstandard scaling in a 1D ARW model was also o
served by Frachebourget al. @30#. They showed that the sur
vival probability of particles in an ARW with one free
boundary depends on the location of the particles. If

g
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count the particles from the free boundary, the survival pr
ability of odd particles decays with an exponent 0.225, wh
those with an even number, decay with exponent 0.865.
explanation for this is based on the fact that even numbe
particles always have left and right neighbors during the p
cess, while odd numbered particles lack one of the ne
bors; since the ARW in one dimension is diffusion limite
they can escape. One can note the similarity of this mec
nism to the one in the ARW2 models we investigated. In o
case there are infinitely many internal boundaries~generated
by particles of different types which cannot exchange site!.

Recently Bray@31# showed that relaxation toward th
critical state in the 2DXY model depends on the initial stat
This is very different from what is expected from field
theoretical renormalization group predictions that can
take low-dimensional topological effects into account. Mo
over, Bray showed that the nonuniversal behavior of the p
sistence exponent in this case can be described by the
dom walk of a particle moving under an attractive cent
power-law force that creates marginal perturbation as c
pared to a free random walk@31#. This scenario is similar to
s.

es
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e
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ours, since we also have particles with RW’s exhibiting pr
sures of marginal strength on each other. Right after
submission two other preprints appeared@32,33#, dealing
with models very similar to those presented here, and rep
ing results which are in accord with ours for those quantit
they investigated.
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G.Ó. acknowledges support from Hungarian research fu
Bólyai ~No. BO/00142/99! as well. The simulations were
performed partially on Aspex’s System-V parallel process
system~www.aspex.co.uk!.
s.

in
llel
-5
s

7.
@1# I. Jensen and R. Dickman, Phys. Rev. E48, 1710 ~1993!; I.
Jensen, Phys. Rev. Lett.70, 1465~1993!.

@2# P. Grassberger, H. Chate¨, and G. Rousseau, Phys. Rev. E55,
2488 ~1997!.
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