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Critical behavior of the annihilating random walk of two species with exclusion in one dimension
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The A+ A—0, B+B—0 process, with exclusion between the different kinds, is investigated here numeri-
cally. Before treating this model explicitly, we study the generalized Domany-Kinzel cellular automaton model
of Hinrichsen on the line of parameter space where only compact clusters can grow. The simplest version is
treated with two absorbing phases in addition to the active one. The two kinds of kinks which arise in this case
do not react, leading to kinetics differing from the standard annihilating random walk of two species. Time
dependent simulations are presented here to illustrate differences caused by exclusion in scaling properties of
the usually discussed characteristic quantities. The dependence on the density and composition of the initial
state is most apparent. Making use of the parallelism between this process and directed percolation limited by
a reflecting parabolic surface, we argue that the two kinds of kinks exert marginal perturbation on each other
and lead to deviations from standard annihilating random walk behavior.

PACS numbse(s): 05.70.Ln, 64.60.Ht, 64.60.Ak

I. INTRODUCTION [7], for which, an explanation is still lacking. In Sec. II,
Hinrichsen’s model will be introduced. It is easy to see that
Non-universal dynamical behavior seems to be a controthe kinks in this model at the symmetry point, corresponding
versial issue in nonequilibrium models. An outstanding ex-0 the compact directed percolation point of the Domany-
ample is the debated behavior of systems exhibiting infiKinzel automaton, exhibit the process described above. In
nitely many absorbing statefl—4]. There has been no Secs. lll and IV we present our high precision time depen-
analytic treatment up to now; argumentation by various audent simulation results from random and seed initial condi-
thors, in most of the cases, was based on simulation result§ons. In Sec. V these results are compared with those ob-
Despite intensive study, the critical behavior of such system&ined by rigid (i.e. paraboli¢ boundaries. We further
is poorly understood, nonuniversality remains an unresolve#vestigate this analogy on the mean-field level in Sec. VI,
problem, and even scaling behavior is questioned. Roughiyhile Sec. VIl is devoted to results in the explicit two-
speaking, in these coupled processes the “primary” particle§Pecies annihilating random walk model with exclusion
follow a branching and annihilating random walk, while the (ARW2e). We summarize our numerical results in Sec. VIIl,
other species just provide a slowly changing environmen@nd give an outlook towartl-species generalization in Sec.
that affects the branching rates of the primaries. The spreadX. A qualitative description of the behavior of Hinrichsen’s
ing exponents of the primaries depend on the initial condiinodel outside the symmetry point on the line of compactness
tions of the environment. is presented in Sec. X and finally in Sec. XI we summarize
A possible way which might lead to a deeper understandand discuss our results.
ing of the mechanism behind nonuniversal spreading could
be the study of simpler coupled systems. Perhaps the sim- Il. GENERALIZED DOMANY-KINZEL SCA
plest case is the coupled annihilating random walk of two . )
species A+A—J, B+B—). Naively, one would expect The quany-K|nzeI(DK) stochastic cellqlar automaton
that this could be described by the exactly solved field theorySCA) [8] is one of the simplest models which show a non-
of the A+ A~ process[5] (ARW). In one dimension, equilibrium phase transition into an absorbing state. This

however, the situation is more subtle than in higher dimen®ne-dimensional SCA is defined on a ring with two states

sions. Particles of different types can block the motion of one 1~ @nd “0” with the following rule of update:

another. The difference between one and two dimensions has

been found to give rise to different phase diagrams in thet 0 0 0 1 1 0 1 1
case of the general epidemic modg]. The question now
arises as to the extent of the relevance of the exclusion pet*1: 0 P P q
turbation caused by this blocking mechanism to a fixed point
of the kind determined in Ref5]. where att+1 the probability of 1's is shown.

Another motivation of this study originates from the in-  In the plane of the parameterp,{]), the phase diagram

vestigations of Hinrichsef6], who found, by simulations, a of the DK SCA is as follows. A line of critical points sepa-
strange scaling behavior in some special case of his modeates the active phasgvith a finite concentration of 1)s
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FIG. 1. (a) The phase diagram of the DK SC#b) The corresponding phase diagram in the case of the simplest version of the GDK
cellular automaton model of Hinrichsen.

from the absorbingvacuunm phase(with zero steady state sality class. This class has been studied by many authors as
density of 1'9. This continuous transition belongs to the uni- the first exception from the robust DP cld49€-18.
versality class of directed percolatidibP) [9]. The end The phase diagram exhibited in Figibl shows that the
point of this line @=1, p=1/2) describes a transition, how- line of PC transitions ends &f=1, p=1/2, a point which
ever, outside the DP class; it corresponds to compact dieorresponds the Ising symmetry point of the DK automaton.
rected percolationlCDP). Here the model exhibits Ising The primary aim of the present work is to investigate the
symmetry and can be solved exadt8). scaling properties of GDK at this point, which will be called
In 1997 Hinrichser{6] introduced a generalized version CDP2 transition point. A typical time evolution of the GDK
of the DK model including more than one symmetric inac-model at this special point, when starting from a random
tive states (1, 12, ...) and onective state A). The mo- initial arrangement of1’s, 12’s andA’s is shown on Fig. 2.
tivation for this study was to look for a possible change inHere active islands can be spatially extended; thus three
the universality class of the line separating the active andinds of compact clusters can grow. Nevertheless only the
passive steady states. This generalized DK m@¢G&K in  andl2 phases arg, symmetric, while the active phase plays
the following), in its simplest form with two absorbing states a special role(The situation is different from a three-state

I1 andl2 has been defined by the rules given below: Potts model with Glauber kinetigs.
S1,S2 P(Alsy,s2) P(l4]s1,5,) P(l2]s1,5,) 0 g
AA o} (1—q)/2 (1—q)/2

Aly p 1-p 0

Al, p 0 1-p

LA p 1-p 0 %0

[,A p 0 1-p °

[114 0 1 0 £

[115 1 0 0

504 1 0 0 100

[Hl5 0 0 1

The geometry of updating is the same as in the case of the
DK SCA. It has been shown by simulatip@] that the phase 150 &
diagram which emerges is similar to that in the DK SCA: an
active phase is separated from an inactive one by a line or
continuous phase transitions. The inactive phase, however is FIG. 2. Evolution from a random initial state in the generalized
symmetrically degenerated( or 12) and the phase transi- Domany-Kinzel SCA(GDK) on the line of compactness, gt 1
tion line now belongs to the parity conservigC) univer-  andp=0.5. Light gray:l1; dark gray:12; white: A.

space



6406 GEZA ODOR AND NORA MENYHARD PRE 61

10° ; ;
0.50
10% |
Q
10° |
0.56 ‘ ‘
10 . . ‘ 0 200000 400000 600000 800000 1000000
10° 10° 10 10° 10° time
time

FIG. 4. Local slopes of the kink density decay for symmetrical
FIG. 3. Total kink number as a function of time started from initial conditions po(11)=po(12)= 0.3, 0.2, 0.15, 0.1, and 0.05
symmetrical homogeneous random initial stateg(l1)=po(I2) (from bottom to top curves The simulation result for one species
=0.3 (solid line and po(I1)=pe(12)=0.1 (dotted ling. The  (ARW) is also showr(top curve.
dashed line corresponds to a single species annihilating random
walk [ po(11)=0, po(12)=1/2], exhibitingp(t)oct=05.
on systems withL =24 000 (Fig. 3) [19]. Throughout the
whole papett is measured in units of Monte Carlo sweeps.
Figure 4 shows the results of simulations. It is seen that

It is well known that the CDP process in one dimension isth deviation the standard ARW val f the d
equivalent to an annihilating random walk process of kinks € deviation from the standar W vajue of the decay
Xponent remains present asymptotically as well: the local

[8] separating compact domains of 0’s and 1's. In the modegIO es of the decay curves
investigated here, two types of kinks can be defined, namely P y
kink K1 between domain& andl1 (andl1 andA) and kink

K2 between neighboring\ and I2’s (and [2—A’s). The
rules of the model inhibit occurrence of kinks between do-

mains of absorbing phases, i.e., betwégn 1 andl2-12.

Kinks K1 andK2 perform annihil_ating random walks— (where we usually usen=8) go to constant valueddore-
K1+K1—~¢ and K2+K2——while the processe&1l e another interesting feature has become apparent: the
+K2—Q, K2+K1-J are forbidden. In other words, yink.decay exponent depends on the initial concentratidns
upon meeting, &1 and aK2 “block” each other(do not o components,(11)=po(12), and in such a way that for
annihilate and do not exchange sjtgg]. To our knowledge o higher initial kink densityflower average distance between
such a kind of kinetics has not been studied before. Motiy,o kink9 the decay is faster. Asymptotically, ag—0, the
vated by this fact we have decided to explore the C”ticalaverage distance of dissimilar kinks goes to zero and the
behavior of the above described system, on the line of Comdecay exponent tends to the ARW value:0.5.
p_actnessq_zl),_by computer simulation. In this study SPE-  |n the case of asymmetric initial conditiofipo(l1)
cial attention will be paid to thep=1/2 symmetry point #po(12)] K1's andK2'’s decay at different rates. The type
CbP2. that has a smaller initial density decays faster. For example,

in the case ofpy(11)=1/9 and py(12)=1/3, K2 decays
roughly liket %% (unperturbed by<1’s) but the local slopes
(1) of p(K1) deviate strongly from 0.5.

= —In[p(t)/p(t/m)]
a(t)= In(m)

(€Y

Ill. SIMULATIONS FROM RANDOM INITIAL STATE

We have performed time dependent simulations starting
from states with uniformly distributed SpeCiAS| 1, andl 2, IV. SIMULATIONS EROM AN ACTIVE SEED
with respective densitiegig(A), po(11) andpy(l12). At the
CDP2 point an unusual scaling behavior of the density of The cluster simulation20] were started from a state with
kinks was previously observdd]: a deviation from the or- uniformly distributedA’s andl 1's except for a singlé2 pair
dinary annihilation-diffusion process with a kink-density de-in the middle and the following characteristic quantities for
cay p(t)~ 1A, Instead,p(t)~t~¢, with «~0.55, resulted the 12’s were followed: (i) the average number df2’s,
from the first simulations. Nio(t); (i) their survival probabilityP,(t); and (iii) the
To check whether the observed deviation from standard@verage mean square distance of spreadin@ sf from the
ARW behavior is only a cross-over effect or if it heralds centerR%(t). The above quantities were averaged oMer
some basic feature of altered kinetics we have performeéhdependent runs at the CDP2 pojirt the case oR,22(t),
very long-time €a=10° Monte Carlo sweepssimulations  only for surviving samplels At the critical point we expect
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FIG. 5. Local slopes of the number b2’s. The initial state is

uniformly distributed with initial densitiepy(11)= 0.1 (solid line),
0.25 (dotted ling, 0.5 (dashed ling and 0.75(long-dashed ling

FIG. 6. The same as Fig. 5, for the cluster survival probability.

y==Ct, (6)
these quantities to behave for-, as

whereC changes under uniform length rescalifiny b) to

Nja(t)oct?, 2
Po(t)t 2, ) C’'=b**"'C. )
Rlzz(t)octz_ (4) Here Z is the dynamical critical exponent. By referring to a

conformal mapping of the parabola to straight lines, and

Upon varying the initial densityo(11), for the exponents showing it in the mean-field approximation Kaiser and Tur-
8 and 7 [defined similarly to Eq(1), the local slopes of ban claimed that fok<1/Z this surface gives relevant per-
N,»(t) andP,,(t)], continuously changing values have beenturbation to the DP process; fé&>1/Z the perturbation is
observed(Figs. 5 and & The deviation of these exponents irrelevant, and fok=1/Z it is marginal. The marginal case
from those of the single-species annihilation random walkesults inC dependent nonuniversal power-law dedéyr
process—1/2 and 0, respectively—is remarkable. Thdletails, see Sec. YIwhile for the relevant case stretched
spreading exponert, on the other hand, seems to be con-exponential functions have been obtained. The above authors

stant within numerical accuracy, and equals that of the singléave given support to this claim by numerical simulations.

species annihilating random walk=2/Z=1, such that the We have investigated the effects of parabolic and reflect-
generalized hyperscaling law of the compact directed percdng boundary conditions for the CDP2 process numerically.
lation [21], Time-dependent cluster spreading simulations have been

performed in the GDK model with parabolic boundaries,
such that at each time step the simulation region is bounded

n+ =212, ) by two I1’s atymin andymay, Where

is satisfied. In this respect it is important thathas been
found to be negative.

g Ymin=L12—2—Ct*, ®)
V. CLUSTER SIMULATIONS OF COMPACT DIRECTED

PERCOLATION CONFINED IN A PARABOLA K
Ymax=L/2+2+ Ct~. 9)
To understand the physics of our numerical results up to

now we set up a parallelism with an other case where the DP
process is bounded by parabolic space-time boundary condi- Two 12’s have been set initially at the centdr/2,L/2
tions. We perform simulations on the compact cluster ver-+1) and some initial spacéwo A’s to the left and right
sion of this, and compare the results with those of the GDKbetweenK1’s andK2's has been added. Therefore the role
model in Sec. VIII. of I1’s is now purely the formation of parabolic boundaries
Kaiser and Turban investigated [22,23 the aroundl2’s, and in factwe investigate the plain CDP pro-
(1+1)-dimensional DP process limited by a special, paracess with reflective boundary conditions typical (1+1)-
bolic boundary condition in space and time directions, dimensional run appears as shown beldw?2, and 0 stand
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Middle curves:N,,(t) (C=2,1.5,1.2, and 1 top to bottom_ower .
curves:P,»(t) (C=2,1.5,1.2, and 1 top to bottomUpper curves: Seems to be constant: equal to uri@g. 10. These results

RZ,(t) (C=2,1.5,1.2, and 1 top to bottgm are very similar to those of the seed simulations in the GDK
modes of Sec. IV.
for 11, 12, andA, respectively. An analysis based on local slopéBigs. 8, 9, and 10

again shows plateaus for high values tofindicating true
power-law behaviors. The magnitude of the exponent char-

< y g acterizing the decay of the density I&f’s decreases & is
increased, reminiscent of a similar situation in Hef].
The survival exponent changes in such a way that the
10022001 hyperscaling relation valid in the case of compact directed

percolation[21],

10222001 2/2=n+ 6=1/2,

is fulfilled. In this case it is again important that takes

1002200001 negative values.
t 1022000001 VI. THEORETICAL CONSIDERATIONS FOR CDP
CONFINED IN A PARABOLA
1222200001 , , ,
A. Anisotropic scaling
1022220001 In (1+1)-dimensional anisotropic systems the correlation
length diverges ag§~t~ "l in time and asf, ~t™" in space,
1022220001 05
100222200001
OB L e AR e s e R
100222220001 7
\ 4 100222200001 07 i ]
100222000001 “
08 L |
102222000001 ]
0.9 "\..‘““""‘ MWWI gy *“'fﬂ'n*"’?‘}‘ﬂrvv, A1.47
When we fixed the exponent lat=1/2, to make the situation Sk b
marginal we found continuously changing exponents for the
exponents of the survival probabilify,, and the number of 1.0

0 200000 ‘ 400000 600000 800000 1000000
time

12’s, N5, by varying the shap€ (Fig. 7). One can see that
the exponent slopes dfl,,(t) (Fig. 8 and P,,(t) (Fig. 9
change by varying.. The spreading exponent of th2'’s, z, FIG. 9. The same as Fig. 8, for the cluster survival probability.
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with a dynamical exponert= v /v (v is also denoted as,

in the literaturg¢. Covariance under a change of the length

scales then requires two different scaling facttys: bZ and
b, =b.

We now consider a system displaying anisotropic critical

behavior, and limited by a free surface in they) plane as
given in Eq. (6). Under rescaling, witht’=t/b* andy’
=y/b, C transforms according to Ed7), as discussed in
Sec. V.

In the marginal case, which we will consider no#,
=1/, the scaling dimension,, of the tip order parameter
becomesC-dependenk,,(C). The order parameter correla-
tion function between the origin and a point aty() trans-
forms as
t y bl*Zk

i — h—2Xm v 2
G A,t,y,C b G b A,bebv C

) (10

whenL is infinite. With b=t*?, Eq. (10) leads to:

V4

ty L)_ a

1
GlA Ly, z|=t"Zn?g| — —,
( yC) g(AV t'le

Herel.=C#(~20 A=(p—p.)/p., andx,, is the scaling
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FIG. 11. Site update rules for compact directed percolation.

B, however, iszera This is because=1/2 marks aliscon-
tinuous transition, by symmetryp;=0 for p<1/2 andp;
=1 for p>1/2. Strictly speakingp is not defined here, but
it is natural to associate the valye=0 with the discontinu-
ous transition.

This problem with the ill-defined exponem® can be
avoided following the lines of Grassberger and de la Torre’s
scaling argumeng20] for discontinuous transitions, as pre-
sented by Dickman and Tretyakd21]. Consider a model
With a transition from an absorbing state to an active state at
A=0, with exponentss, 7, z, and 8’ defined as above.
Suppose, however, that the order paramptées discontinu-
ous, being zero foA <0, and

p=potf(A) (13
for A>0, wherepy>0, andf is continuous and vanishes at
A=0. According to the scaling hypothesis for spreading
from a source, there exist two scaling functions, defined via
[20]

p(y,)~t7 TG (y?t7, A1) (14)

and

P(t)~t~ 2D (AtY). (15)
[Here p(y,t) is the local order parameter density:
~A""I] Existence of the limitP,, implies that(I)(x)~xﬁ/
asx—oo, with g’ = ov.Ina surviving trial, the local den-
sity must approach the stationary densityas t—o, so
p(y,t)~AP po, for t—o with fixedy, andA small but posi-
tive. It follows thaté(O,x)~xB' for largex.

An important consequence of this is that we can use, as a
scaling dimension of the order parameter for CDP, the value

dimension of the order parameter. The latter is connected t8’ in the relationx,,= 8/ v instead of3. Via scaling rela-

B, the critical exponent of the order parameter \Ba
=vX,. We will use this scaling form in the following3 is

tions B’ = dv|, the values obtained by computer simulations
for & will be compared with results for CDP plus parabolic

the usual order-parameter exponent, defined, for the Dkyoundary conditions. In this context the connection, again

SCA, throughp;(p—pc)?, for p>p.; p; is the stationary

via scaling relation, betweefiand the decay exponent of the

density of 1's. In case of a first order transition, as is the casgensity of kinks when starting from a random initial state
with compact directed percolation, the following consider-wjill also be made use of .

ations hold.
As already mentioned,

P(t)oct™? (12

is the survival probability of 1s for spread of particle§l’s,
in our notation about the origin. Away from the critical
point B’ governs the ultimate survival probabilifgtarting

from a localized sourge P..=lim, ,..P(t)(p—p.)? . Itis

B. Mean field analysis for CDP confined in a parabola

In this section we will follow the lines of the mean-field
analysis of the (* 1)-dimensional DP process confined by a
parabola as given in Ref23], but now applied to compact
directed percolatior{for the basic processes, see Fig,).11
The order parameter correlation function is the probability
density P(t,y) for a site at {,y) to be connected to the

known thatB’ =1 in CDP.[8] The order parameter exponent origin.
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First we consider the case without confinement. In the For k=1 the critical behavior is the same as for uncon-
mean-field approximation one can set up an equation for théned percolation, as expected for an irrelevant perturbation.
connectedness at{ 1y): For the true parabola which is the marginal geometry, one

may use Eq(22) with k=1/2 to obtain

P(t+1y)=p{P(ty+1[1-P(ty—1)]
+P(t,y-D[1-P(ty+1)]}

+P(t,y+1)P(t,y—1). (16)

taP_l&2P+§¢9P Yy -

Gt 2.2 2 g_tT’Z' (29
. ) e ) ) i which is of the form studied in Ref24] for the directed
Going to the continuum limit the following differential equa- |, -, problem. WritingQ(t,2) = ¢(t) y:(¢) leads to the fol-
tion is obtained: lowing eigenvalue problem fo#({):

P P
=P +(2p-1P+(1-2p)P% (17 L&y tdv_ ), 26
ay 2 4e2 2d¢ ’
{
The homogeneous, stationary solution of ELy) is ) 52 o . .
with ¢(t)~t~" . The solution is obtained as the eigenvalue

1 for p>1/2 expansion
Po=10 for p<1/2, (18

5 o1 (27)

_ —)\ﬁ 2 1 yz}
describing a first order transition for CDP p¢=1/2, as is P(Ly) nZO Baty Fa| An, '
the case. At the transitiop=p., Eq. (17) reduces to

The behavior at largéis governed by the first term in this
P _14°P 1g  ©xpansion, which decays 450, i.e., with aC-dependent
a2 (pyZ‘ (19 exponent, as expected for a marginal perturbatitme di-

mension of the tip-to-bulk correlation function is the sum of

This is the ordinary diffusion equation of the random the tip and bulk order parameter dimensions, the first one

walk with solution being variable Comparing with the form of the decay in Eq.
, (11) givesA3=[x"'(C)+x,]/Z and, using Eq(21), the tip
ex% _ y_) order parameter dimension is given by
2t
Pty)=—=——, (20) 1
V2t xM(C)=2\3— 5 (29)

which is exact in the CDP case. From comparison with the

scaling form in Sec. VI A, the followingwell-known) expo- S dependence o€ is shown in Fig. 2 of Ref|22].
nents for CDP arise: Analytical results can be obtained only in limiting cases,

which were already discussed in RE24]. WhenC is infi-
nite, )\g=1/2, only the first term in the expansion remains,
(21)  which satisfies the initial and boundary conditions, giving
back the free solution in Eq20). For largeC values, the tip
On a parabolic system, we use the new variablesd exponent is xmf(C)=%+ J2/7C exp(=C42)[1+0(¢)],
L(t,y)=y/tk, for which the free surface is shifted v  wheree is the correction term itself. For narrow systems, the
==*C, and Eq.(19) is changed into hypergeometric function gives a cosine to leading order in
C2. One obtains the following asymptotic behaviortin

N| =

y=1, v=12, Z=2, Xy=

P 1 P (9P

=tk o, (22
2k 2

ot 2t 5§ t (9§ P(t’y)Nt—wz/SCZ CO{ 22{/{) , (29)
with the boundary conditiof(t,{=*=C)=0. Through the
change of function and the tip exponent diverges a$/4C2.

K For 0<k<1/2 the dependence dnis expected to be a
_ _ D o2ok-1 stretched exponential function. For details see R&2,24.
P(t,0) eXF{ 54t }Q(L(), (23)

VII. ANNIHILATING RANDOM WALK OF TWO SPECIES

Eq. (22) leads to WITH EXCLUSION

Q_ 1 '92_Q+ ko122 = o4 To check our results concerning the scaling properties of
gt otk 9Lt 2 (k=1)¢ 119 @Y kinks in the GDK model at the CDP2 point, we have carried
out an explicit simulation of the annihilating random walk of
for which the variables separate whies 1,1/2, or 0. These two species A,B) with exclusion. The model we have in-
values ofk just correspond to irrelevant, marginal, and rel- vestigated has been suggested by HinricHsgnand is as
evant perturbations. follows. A (B) will hop to a neighboring empty site with
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FIG. 12. Local slopes of particle decay in the annihilating FIG. 13. Local slopes of th&2-K2 neighbor distances in a
random walk plus exclusion process of two speciesGDK model of sizeL=24000. The initial state is uniform, with

(L=24000). The initial conditions ang,=0.1, 0.25, and 0.5 from  po(11)=po(12)=1/3.
the bottom curve to the top curve.

. o ) i in case of py=0.5 happens only fot>1.5x10° Monte
probabilityp1A (p1B), or annihilate with a neighbok (B)  carlo sweeps. The averageA and BB distances confining
with probability p2A (p2B), while A and B do not react another type of particle have also been measured during the
when moving into neighboring positions. The initial configu- simulations, which enables us to extract the amplit{@eof
ration was chosen in such a way that always allows pairs ofhe confinement in the function fitte(<t~ ). These val-

the same kind to annihilate within some finite time interval yes will be used to compare the results with those of the
(i.e., the system evolves into an empty statemely, GDK (see Sec. VII\.

A.A.B.B.ALA.LA.A.B.B....
VIlIl. SUMMARY OF TIME DEPENDENT RESULTS

This means thaAA and BB pairs have been put in a one- Since in all of the previously shown cases we found non-
dimensional(1D) ring with initial probability p(0). Had we  universal scaling, depending on the initial conditions and the
not chosen the initial state in this way, the system wouldgeneric model to account for such behavior, seems to be the
have ended up in some finite particle configuration wherecase of CDP2 with parabolic boundary condition, we have
A’s and B’s follow each other alternatingly, separated by decided to measure the region of confinement in all cases,
arbitrary empty regiong(This initial configuration is also in and plot the survival probability exponeng&and the kink
agreement with the arrangement of the two kinds of kinks indecay exponentg as a function of the shape of the mea-
some random initial state of the GDK modéThe probabili-  sured parabola.
ties p1A, p1B, p2A, and p2B have been chosen to be In the present casg’ the final survival probability of a
unity, to achieve maximum simulation effectiveness; nocluster plays the role of the order parameter expoyggris
qualitative difference in the results have been found uporexplained at the end of Sec. VI, and for the characteristic
lowering them. exponents we haves=g'/v|. Thus we have plotted the
Clearly this process is different from the simple annihilat-results for §(C). In a common graph the fitted values for
ing random walk of two speciea+B— O [25], therefore, «(C) are also shown; on the level of kinks the order param-
we may expect that a field theory describing this modeleter 8 is connected tar in the same way ag’ is to & for
(which, however, is still missingwould result in a different “spins” (see e.g. Ref.26]).
fixed point with different critical exponents as well. Further-  For random initial conditions in the GDK model the char-
more one can argue that when comparing the simple randocteristic distance between two neighboring kinks of a given
walk and the random walk plus exclusion processes, one aldype has also been measured. The average neighbor distance
observes different dynamical behaviors. This latter case ifc>-k», Shown in Fig. 13, has been obtained for initial den-
nothing else but th& =0 dynamics of the 1D Ising model sities: po(11)=po(12)=1/3. The power-law increase for
with Kawasaki exchange, where we have different domairlarget (see the plateau fdar>30.000) with the same scaling
growth properties than in case of a simple random walk. exponent as the decay exponent is not very surprising, be-
An extensive numerical simulation with the look-up table causepy;(t) < 1/ 5.k 2.
algorithm seems to confirm this expectation. As Fig. 12 Since theK2-K2 andK1-K1 pairs confine the motion of
shows, the slopes of the density decay started from the speach othefa K1-K2 pair cannot exchange #2-K1) this
cial pairwise random states described above depend on timwer-law increasing length scale imposes a “stochastic”
initial density p(0). boundary conditiorjpressure on kinkswith a mean value of
The local slopes tend to constant values greater than a parabola that was similarly investigated by Kaiser and Tur-
=0.5 in agreement with the GDK kink results. The level-off ban [22] in the case of (% 1)-dimensional DP processes
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Initial I1-12 distance -1.0
t=0 — —
active sites active sites -0.9 - 1
t I1 cluster
i I1 cluster
B -0.8
e
3 | ]
< 07
spreading size ~ boundary size=
Ct~pl ~t 0.6 - |
\[2 cluster .
\ I1-12 exert marginal
perturbation on each other -05 - 7

FIG. 14. Possible explanation for the nonuniversal scaling. The
symmetricl1 and |2 clusters exert marginal exclusion perturba- |G, 15. Confinement shape paramét@) dependence of expo-
tions on each other. nenté for cluster simulations in the parabdlsquarey thel 2 clus-

ter (diamond$, anda in simulations from uniform initial conditions
in ARW2e (circles and GDK (triangles. The solid line shows the
[23], and adapted for the case of a CDP-like first order tran<r*/8C? mean-field approximation.
sition in Sec. VI. As discussed above, the scaling dimension
of the order parameter changes continuously with the ampli-
tude of the parabolically growing confining box size if it In ARW simulations the formA+ Ct* has again been
grows with the same exponent as the cluster inside. fitted for the measured\A and BB distances. In cluster

In our case we encounter a similar situation. The kinksimulations we fitted the forny=Cxt? for the region of
density decay exponeit seems to vary continuously in the confinements, and determined the respediiiein all cases.
case of symmetrical initial conditions. The initial conditions  As Fig. 15 shows, we obtained similar monotonically de-
affect the amplitudes of the density decags was shown to creasing curves in all cases, which also agrees with the re-
be valid by field theory for pure reaction diffusion &f B sults of Ref.[22]. The uniform GDK and ARW2 results
particles[25]), and therefore the amplitudes of the confine-seem to lie on the same curve. The spreading simulation
ment region size$C) (see Fig. 14 To compare our results results of GDK are different from those of the CDP plus
with those of Refs[22,23 the form A+ Ct* has been fitted parabolic boundary condition case. This can be understood,
to thelk,_k»(t) distances determined from the density decayhowever, since in the former case the confined particles
simulations[assumingl k> k2(t) = 2/pyink(t)]. The follow-  (12’s) have a back effect on the bulk(’s) particles, while
ing table summarizes the results for GDK with random initial this is not the case when the boundary is fixed.

conditions: We also show thew?/8C? curve, determined as the
asymptotic solutiorC—0 of the mean-field approximation;

Po C a see Sec. VI, Eq.29). This seems to be in fair agreement with
the case of the CDP plus fixed parabolic boundary condition.

0.0 © 0.500@3)

0.05 14.09 0.517(2)

0.10 7.62 0.528(2) IX. GENERALIZATION FOR N>2: SYMMETRIC

0.15 6.11 0.534(2) ANNIHILATING EXCLUSION PROCESS OF N SPECIES

0.2 5.85 0.537(2) We have carried out preliminary simulations in the gen-

0.3 4.18 0.54(1) eralized version of the model introduced in Sec. VII. The
system was started from configurations like

This is in agreement with Fig. 8 of Ref23], where an .... A..A.B...B..C.C..DD....E..EFF ...

increasingC causes a decreasing exponent. Note that the first

line in the table corresponds to the simple ARW process;

therefore, there is no confineme@mplitudeC is ). where species of the same type can annihilate each other, but
The main difference between the rigid parabola boundarydifferent types cannot exchange. Our results show that con-

case and the “stochastic” confinement is that in the lattercerning the time dependence of the density the deviations

case the boundary generates an additional noise to the mdrom the square root decay persist fdr2, and this prop-

tion of confined particles. Therefore we do not simply haveerty also seems to remain valid fisk— .

“free” particles confined in a parabola; they are also per- Figure 16 shows that a similar level off can be observed

turbed by the noise in such alk- K2 symmetrical way that in the local slopes as in thgd=2 case witha>0.5. A ten-

the outcome perturbation is marginal. dency toward increasing with increasingN is apparent in
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volves the fact that this line is a line of first order transition
points with an order parameter expone®t=0. This first
order transition occurs if a symmetry-breakiffgnagnetic™)

02 1 | field coupled to thd 1 andl2 spins. For a detailed descrip-
tion of a similar situation, see Ref27]. All these features
054 | O TRy have been supported by simulations. As an example we can
\ ‘ h"L“‘,‘V‘.‘J\‘.‘W‘M‘lir‘“K\W‘MWr R give some results obtained pt=0.4, starting with a single
8 ‘WWW Mw,V,Mn\wa-W‘«WWWW W»Mwm 12 in the sea ofil’'s andA’s (25% of 11, 75% ofA); &
e

0.56 '/ww i =0.45, z/2=0.47, andn,,=—0.02. It is worth mentioning

\/ | that, for hyperscaling to hold, it is again important tha

‘{ be negative.
0.58 |
|
{ XI. DISCUSSION
! I L L L . . . . .
0'60 20000 40000 60000 80000 100000 We have numerically investigated the one-dimensional
time generalized Domany-Kinzel cellular automaton on a line in

. . , .. the plane of its parameters where only compact clusters
FIG. 16. Results for density decay in the symmetric annlhllatlnggrow_ The two types of kinks in the simplest version of this
exclusion process dfi=3 and 4(top and bottom curvespecies. compact GDK modeltwo absorbing phasggollow an an-
. . . o ) nihilating random walk with exclusiofno reaction between
our simulations; the growing effect of finite size corrections, yiterent types. The equivalence with an explicit two-species
however, prevented us from going further, for higher valuesspyy model with exclusion is shown, provided the initial

of N, in this study. state is prepared in such a way that the kinks are arranged in
pairs with some density. High precision simulations revealed
X. GDK ON THE LINE OF COMPACTNESS that this system relaxes in a nontrivial way: the decay expo-

nent of the kink density depends on the initial density of

On the lineq=1 the role of the absorbing statelsl(and  kinks. We argue that this is a kind Gfiterna) surface effect,
[2) is symmetric. The above reported simulation results fojmilar to the ARW process confined by a rigid space-time
the GDK model refer tqp=1/2, the CDP2 point. Now we parabola, provided the power of the parabola is chosen to be
will discuss the situation fop# 1/2. Forp>1/2 the creation marginal. This case has been explicitly investigated, with the
of new A’s happens with a probability greater than 0.5; theresult that the spreading exponents behave qualitatively the
active domain size grows exponentially, and the inactive resame way as expected from the corresponding mean-field
gions die out quickly(and symmetrically, the allA phase approximation. We have no proof of the marginality for the
plays the same role as the all-1 phase of the original DKheory including fluctuations, but rely on symmetry argu-
automaton[8]. The deviation from the DK picture is quite ments. If we assumed that particles exerted relevant pertur-
apparent, however, fqp<1/2, as instead of the all-O phase bations k<1/2) on each other, the corresponding parabola
of DK, for all values of p with the exception ofp=0,  picture would predict a stretched exponential de@algehav-
Glauber-Ising-like kinetics governs the motion of kinks. Thejor that is very difficult to differentiate from power laws by
kinks here are extended objec&'¢), somewhat similarly to  simulationg and the local slopes should go to some higher-
those in Grassberger's CA modél] (for p<p., wherep,  value as a function of timémeaning faster that any power-
is the critical point of a parity conserving phase transition law decay. However our high precision data show just the
where kinks of different extension@nd even of different opposite case: the local slopgscreases a function of time,
structure$ also separate absorbing-phase clustgks.p=0 tending to a value somewhat greater than 1/2.
diffusion stops and a striped space-time picturélofandl 2 Nevertheless, the possibility of pure square-root decay,
domains freezes in, again like in Grassberger's médgted  masked by some tremendously long crossover function, can-
above) The average size ol’s goes to zero between two not be ruled out. One could still expect a nonuniversal scal-
domains of the same type quickly; kink “particles” of the ing of the survival probability of particles in the same way as
same type perform biasedrandom walk toward each other. was observed in Ref§22,23, or in another similar situation
On the other hand, between domains of different types therg28] where a diffusing “prisoner” confined by a marginally
remains a film ofA’s of average size 1, since a collision of growing cage was investigated. In the latter case the bound-
all andl2 domains always creates a névat the next time  ary condition was absorbing, and an exact solution was pos-
step. This means that kinks of different types still block thesible, giving an exponent for the survival probability which
motion of one another. Therefore the role of #is is simi-  is a continuous function of the amplitude of the marginal
lar to the kinks of theT=0 Glauber Ising model. On the parabola. Furthermore the survival of a diffusing prisoner
whole line of 1/2>p>0, in the long time limit, therefore, (with diffusivity D), inside a cage where both walls diffuse
one can expect the number of such kinks to decrease dswith diffusivity A), has been solved exactly, and the decay
(tY2). On the other hand this is a line of compactness, as akxponent was found to be/2 cos [D/(D+A)] [29].
clusters growing from a seed are compact; the characteristic Nonstandard scaling in a 1D ARW model was also ob-
exponents {, 8, andz), though strongly dependent gn  served by Fracheboug al.[30]. They showed that the sur-
and the composition of the initial state, satisfy the hyperscalvival probability of particles in an ARW with one free
ing law valid for compact clustef21]. This statement in- boundary depends on the location of the particles. If we
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count the particles from the free boundary, the survival probeurs, since we also have particles with RW’s exhibiting pres-
ability of odd particles decays with an exponent 0.225, whilesures of marginal strength on each other. Right after our
those with an even number, decay with exponent 0.865. Theubmission two other preprints appeargd®,33, dealing

explanation for this is based on the fact that even numberegith models very similar to those presented here, and report-

particles always have left and right neighbors during the proing results which are in accord with ours for those quantities
cess, while odd numbered particles lack one of the neighthey investigated.

bors; since the ARW in one dimension is diffusion limited,
they can escape. One can note the similarity of this mecha-
nism to the one in the ARW2 models we investigated. In our
case there are infinitely many internal boundatgsnerated
by particles of different types which cannot exchange sites  The authors would like to thank Z.'Ra, S. Redner, P.
Recently Bray[31] showed that relaxation toward the Arndt, and U. Tauber for useful remarks, and H. Hinrichsen
critical state in the 2DXY model depends on the initial state. for taking part in the early stages of this work. Support from
This is very different from what is expected from field- Hungarian research fund OTKMNos. T-23791, T-25286,
theoretical renormalization group predictions that cannognd T-23552is acknowledged. One of (8l.M.) would like
take low-dimensional topological effects into account. More-to thank R. Graham for hospitality at the Fachbereich Physik
over, Bray showed that the nonuniversal behavior of the peref Universitd-GHS Essen, where this work was completed.
sistence exponent in this case can be described by the ra@-O. acknowledges support from Hungarian research fund
dom walk of a particle moving under an attractive centralBolyai (No. BO/00142/99 as well. The simulations were
power-law force that creates marginal perturbation as comperformed partially on Aspex’s System-V parallel processing
pared to a free random walB1]. This scenario is similar to system(www.aspex.co.uk
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